

GDS2M

Andreea Alexandru, Gabriela Ciuprina, Sorin Lup

8 March 2013

Contents

1. Purpose of this document ... 4

2. What is GDS2M? ... 4

2.1 Input files .. 4

2.2 Output ... 4

3. MEMS .. 5

4. KLayout ... 6

4.1 Lyn files ... 6

4.2 Database units .. 6

4.3 Shapes ... 6

4.3.1 Box... 6

4.3.2 Simple Polygon / Polygon ... 7

4.3.3 Path ... 8

4.4 Transformations .. 9

4.4.1 Scaling ... 9

4.4.2 Rotation and mirroring ... 10

4.4.3 Translation .. 10

5. Input files .. 10

5.1 2D information files .. 10

5.2 3D information file - the technology file ... 10

5.3 The problem file .. 12

6. Functions, algorithms .. 13

6.1 The two modules .. 13

6.2 Extracting information from KLayout ... 14

6.3 Extracting information from the technology and problem files ... 14

6.4 Processing the information and drawing .. 14

6.5 Adding the information to chamy ... 15

7. Chamy ... 16

8. Running the code .. 17

9. Important observations and future improvements .. 23

10. Conclusions ... 23

11. Acknowledgments ... 24

12. References .. 24

APPENDIX A ... 25

1. Purpose of this document

 This is the documentation of the GDS2M software tool for preprocessing MEMS devices. The

facilities and functions of GDS2M, explanations as to how to create the input files and many

examples are shown, for a complete understanding of the program.

2. What is GDS2M?

 GDS2M is an effective software tool that extracts geometric information of MEMS (Micro-

Electro-Mechanical Systems) and other IC devices and exports it to data structures in MATLAB [1]. Its

main objectives are to ease the access and altering of certain geometric aspects, to provide a link

between the files obtained from the design process and the testing and modelling software tool,

before the prototype is approved for fabrication.

 GDS2M is structured in two main parts. The first part is dedicated to obtaining all the

characteristic information for the switch, along with the 2D and 3D representation, while the second

part links the information to chamy, an in-house tool developed in the frame of the Chameleon-RF

European research project [2], for the RF simulation of the constructed switch.

2.1 Input files
 The necessary input files for GDS2m are the lyn files (extracted from KLayout [3], which store

the layout and the 2D information of the masks used in the switch), the technology file (which offers

3D information about de vertical disposition of the switch, about the material and containment of

holes) and the problem file (needed for the RF simulation, which contains information about the

terminals and parameters).

2.2 Output
 The first part of the program exports the following data structures:

 'Obj' - data structure which contains the geometric and material information for each object

in each layer from the switch

 'LayersExt' - data structure which contains the geometric and material information for the

exterior layers

 'xmax' and 'zmax' - dimensions of the domain, used as borders in chamy

 These information are used when creating the device and layout in chamy (along with the

problem file).

 The second part of the program exports the grid created with the given information and

The functions in GDS2M can :

 extract the geometric information from the lyn files and create graphic 2D representations

of the objects

 extract the 3D information from the technology file and together with the information

obtained from the lyn files, to create graphic 3D representations of the switch

 create a more complex structure (by splitting the objects in 'bricks') and be able to export it

in chamy

 analyze and process the extracted information (ex : to fill/eliminate the holes in the

membrane, to approximate the surface of each object with a union of rectangles with edges

parallel to the axes etc.)

 reconstruct the switch from bricks and add terminals to it

3. MEMS

 During the past 20 years, technological research was aimed towards minimizing the circuits

and working in microwave and millimetre waves areas. The development of microfabrication and

processing techniques favoured the use of MEMS circuits. Bulk production and reduced dimensions

brought increasing interest in the MEMS area and especially in the radio frequency (RF) MEMS. The

term RF MEMS refers to the design and fabrication of MEMS for RF integrated circuits, which is

different from the traditional MEMS devices operating at RF frequencies [4]. One of the applications

of RF MEMS that have attracted much interest are switches, widely used in the communications area

(satellite communication: 12-35 GHz, radar systems: 5-94 GHz, mobile communication systems: 0.8 -

6 GHz, instrumentation systems: 0.01 - 50 GHz). The main advantages of the RF MEMS switches over

the currently used devices (PIN diodes and field effect transistors) are low insertion losses, high

isolation, null power consumption and reduced costs [5].

 The final outcome of the MEMS design process consists of a file describing the masks that

will be used during the fabrication, accompanied by a technology documentation describing the

layers and the materials used. If further research needs to be carried out and new prototype tools

need to be developed, then it is useful to easily access the geometrical and material information

from the files that designers provide. The main contribution of GDS2M is related to this

preprocessing step.

 The available file formats for MEMS fabrication include GDS II (Graphic Database System),
OASIS (Open Artwork System Interchange Standard), CIF (Caltech Intermediate Form), DXF (Drawing
Exchange Format) and Gerber (RS-274X) . The most commonly used stream format is .GDSII,
preferred because of its binary format and small file size. The information provided by the GDSII
format are the two-dimensional geometrical shapes, text labels and database units, grouped by
labels in a hierarchical form.

 The small number of available (and free) software tools capable of extracting the
information from a .GDS II file and exporting it to other programming environments has determined
us to create GDS2M, a MATLAB based tool that satisfies the requirements above.

4. KLayout

There are several software tools for viewing and editing .GDS files. We mention KLayout,
CleWin, Layout Editor, Koala, Java GDS [6]. KLayout is a free .GDS viewer and editor that supports
Ruby scripting, as well as manual manipulation of the .GDS files.

The layers in the .GDS file represent the masks used. By using the facility Trace Net in

KLayout, the user can export the 2D information of each object from the layers in a .lyn file, which
uses the xml format.

4.1 Lyn files
 KLayout offers the facility of exporting the geometrical information in lyn files, which use the
XML format. These files can be obtained by using the Trace Net function, for each object in the layer.
The lyn files contain the following fields : <nets> and <net>, with the <name> of the net and
<top_cell>, the name of the cell, <layout> the address where the file is exported to, <dbu> the
database units in which the coordinates are scaled, <complete> Boolean field, with values of true or
false, <layer> the number of layer in the layout, <cell> the name of the cell in which the object is
drawn, <trans> information about the linear transformations that can be applied to the structure,
<shape> the type of shape and the coordinates.

4.2 Database units
 The database units are specified in the <dbu> tag and has usual values of 0.001, 0.01, 0.1. .
This value is very important, since all the coordinates are given as micrometers multiplied by 1/dbu.
The dbu value can be modified before exporting the lyn files in KLayout, by saving the gds and
changing the value in the field of 'Database unit' or by File -> Layout Properties -> Database Unit.
However, GDS2M handles all the dbu values.

4.3 Shapes
 There are several shapes than can be implemented in KLayout. The ones that are used for

MEMS and IC designs are: box, polygon, path (additional, point and text). The shape is written in the

tag <shape>.

4.3.1 Box

 Box is basically a rectangle, defined by two opposite corners: the corner from lower left and

the corner from upper right (Fig. 1).

Figure 1. Box Shape in KLayout

<?xml version="1.0"?>

<nets>

 <net>

 <name>Net1</name>

 <top_cell>cell_box</top_cell>

 <layout>C:/KLayout/shapes/box.GDS</layout>

 <dbu>0.001</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>1/0</layer>

 <cell>cell_box</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (-820,360;-280,700)</shape>

 </element>

 </shapes>

 </net>

</nets>

4.3.2 Simple Polygon / Polygon

 Simple polygon is a polygon described by the x and y coordinates of the vertices, which can

not contain open spaces (hulls) without having the inside vertices connected to the exterior (Fig. 2).

Polygon represents an extension to the Simple Polygon shape, that can contain hulls and it's defined

by the coordinates of the exterior contour and the coordinates of the interior contours. GDS2 format

doesn't support the Polygon shape and automatically converts it in a Simple Polygon by introducing

links between the interior and exterior points (Fig. 3).

Figure 2. Simple polygon in KLayout.

Figure 3. Simple polygon with hulls in KLayout.

<?xml version="1.0"?>

<nets>

 <net>

 <name>Net1</name>

 <top_cell>cell_polygon</top_cell>

 <layout> C:/KLayout/shapes/polygon.GDS</layout>

 <dbu>0.001</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>1/0</layer>

 <cell>cell_polygon</cell>

 <trans>r0 *1 0,0</trans>

 <shape>polygon (-270,-450;-200,80;-690,240;-

20,530;440,110)</shape>

 </element>

 </shapes>

 </net>

</nets>

4.3.3 Path

 Path is a polygonal shape, a line with a predefined width. A path is described by the vertices

of its spine (a sequence of points that the line follows) and the width, measured transversally (Fig.

4). A path's end caps can be rectangular (by default), or round (there are problems with the

compatibility of round end caps with GDSII).

Figure 4. Path in KLayout.

<?xml version="1.0"?>

<nets>

 <net>

 <name>Net1</name>

 <top_cell>cell_path</top_cell>

 <layout> C:/KLayout/shapes/path.GDS</layout>

 <dbu>0.001</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>1/0</layer>

 <cell>cell_path</cell>

 <trans>r0 *1 0,0</trans>

 <shape>path (-720,410;160,610;520,100;990,100) w=100 bx=0 ex=0

r=false</shape>

 </element>

 </shapes>

 </net>

</nets>

4.4 Transformations

 Linear transformations such as translation, scaling rotation and mirroring can be applied to
objects. Such transformations can be viewed in the tag <trans>. The format of the transformation is
([<dx>,<dy>] [r<angle> | m<angle>] [*<mag>]).

4.4.1 Scaling

*<s>: Scaling is a magnification by the factor "s". If no scaling is specified, none is assumed.

<trans>r0 *23 0,0</trans> - scaling by '23'

4.4.2 Rotation and mirroring

r<a> or m<a>: A rotation by angle "a" (in degrees) or mirroring at the "a" axis (the x axis rotated by

"a" degree). The two transformations exclusive, only one can be applied at a time. If no rotation or

mirroring is specified, none is assumed.

<trans>r90 *1 0,0</trans> - rotation by 90 degrees

<trans>m45 *1 0,0</trans> - mirror at 45 degrees axis (swap x and y)

4.4.3 Translation

<dx>,<dy>: The translation is applied after rotation and scaling in micron units, on x axis and on y

axis. If no displacement is specified, none is assumed.

<trans>r0 *1 100,50</trans> - displacement by 100 µ on the x axis and by 50 µ on the y

axis

5. Input files
 GDS2M is able to directly implement a switch, with no coding required. However, the

information has to be provided in some files : the lyn files (the files describing the 2D layout of the

layers), the technology file (the file describing the 3D layout and other specific information about the

layers) and the problem file (the file related to the introduction of information linked to the solving

of the problem).

5.1 2D information files
 The 2D information files are the lyn files (Lyn Files). The layers in the .GDS file represent the

masks used. By using the facility Trace Net in KLayout, the user can export the 2D information of
each object from the layers in a .lyn file which uses the XML format. These files are used to extract
the geometric information and to draw the two-dimensional view of the switch.

5.2 3D information file - the technology file
 The other information necessary for processing, such as the 3D information (height and

thickness) and the material information for each layer, are taken from the documentation provided

by the designers. Since there is no standard in this respect, we defined another .xml file, called the

technology file, that holds this information. This file completely describes the geometry and

constitution of the switch. It includes details about the substrates and exterior layers that

encapsulate the switch and the masks that compose it. The exterior layers are defined by the

thickness and material. The masks contain information about the path where the associate lyn file is

stored, the type of the object the mask represent (ex: electrode, coplanar waveguide, membrane

etc), the height, thickness and material. There is also a tag named <holes> which is ‘1’ if the layer

contains holes and ‘0’ otherwise. If the value is ‘1’, then the <holes_dimensions> tag becomes valid

and holds the maximum area of a hole, specified to avoid elimination of important geometry. The

color tag is specified for the case in which the designers prefer a certain code color.

 Example of technology file for a capacitive shunt switch, described in [7].

<?xml version="1.0"?>

<nets>

 <layersExt>

 <layer>

 <material>SI</material>

 <thickness>600</thickness>

 </layer>

 <layer>

 <material>SIO2</material>

 <thickness>1</thickness>

 </layer>

 <layer>

 <material>AIR</material>

 <thickness>600</thickness>

 </layer>

 </layersExt>

 <masks>

 <mask>

 <filepath>problemsQian\strat1\</filepath>

 <object>CPW</object>

 <material>ALUM</material>

 <color>r</color>

 <height>601</height>

 <thickness>4</thickness>

 <holes>0</holes>

 </mask>

 <mask>

 <filepath>problemsQian\strat2\</filepath>

 <object>electrode</object>

 <material>ALUM</material>

 <color>c</color>

 <height>601</height>

 <thickness>0.4</thickness>

 <holes>0</holes>

 </mask>

 <mask>

 <filepath>problemsQian\strat3\</filepath>

 <object>dielectric</object>

 <material>NITRIDE</material>

 <color>g</color>

 <height>601.4</height>

 <thickness>0.1</thickness>

 <holes>0</holes>

 </mask>

 <mask>

 <filepath>problemsQian\strat4\</filepath>

 <object>membrane</object>

 <material>ALUM</material>

 <color>y</color>

 <height>605</height>

 <thickness>0.4</thickness>

 <holes>0</holes>

 </mask>

 </masks>

</nets>

5.3 The problem file
 Chamy requires another input file, which describes the solved problem, containing details

about the electric or magnetic terminals, geometric parameters and other extra dimensions for the
layout included in the computational domain used in the EM analysis.

The terminals, on which the boundary conditions are set, are described by their labels, the bricks

they are attached to, the domains they are included in and their types. A domain is defined by their
limits: "xmin", "xmax", "ymin", "ymax", "zmin", "zmax". The terminal types may be: "eg" – electrical
ground terminal, "ev" – electrical terminal excited in electric voltage, "ec" – electrical terminal
excited in current, "mg" – magnetic ground terminal, "mv" – magnetic terminal excited in magnetic
voltage, "mg" – magnetic terminal excited in magnetic flow.

The parameters represent the dimensions that can be varied in the parametric analysis, e.g.

for variation studies or design optimization. They are attached to one object (example: membrane,
coplanar waveguide, dielectric). The parameters must contain a tag that defines the type of
dimension that is varied: W (width), L (length), H (height). Finally, the interval in which the value can
be varied is specified in <lower_value> and <upper_value>. There are also other values given in the
problem file, e.g. the values regarding the positioning of the switch in the computational box for
chamy.

An example of the problem file used for the simulation of a capacitive shunt switch [7].

<problem>

 <terminals>

 <terminal>

 <brick_label>brick_1</brick_label>

 <terminal_label>ground_terminal_1</terminal_label>

 <plane>zmin</plane>

 <type>eg</type>

 </terminal>

 <terminal>

 <brick_label>brick_2</brick_label>

 <terminal_label>ground_terminal_2</terminal_label>

 <plane>zmin</plane>

 <type>eg</type>

 </terminal>

 <terminal>

 <brick_label>brick_3</brick_label>

 <terminal_label>cpw_terminal_1</terminal_label>

 <plane>zmin</plane>

 <type>ev</type>

 </terminal>

 <terminal>

 <brick_label>brick_1</brick_label>

 <terminal_label>ground_terminal_3</terminal_label>

 <plane>zmax</plane>

 <type>eg</type>

 </terminal>

 <terminal>

 <brick_label>brick_2</brick_label>

 <terminal_label>ground_terminal_4</terminal_label>

 <plane>zmax</plane>

 <type>eg</type>

 </terminal>

 <terminal>

 <brick_label>brick_4</brick_label>

 <terminal_label>cpw_terminal_2</terminal_label>

 <plane>zmax</plane>

 <type>ev</type>

 </terminal>

 </terminals>

 <params>

 <param>

 <object>membrane</object>

 <dimension>W</dimension>

 <lower_value>50</lower_value>

 <upper_value>200</upper_value>

 </param>

 </params>

 <extra_space>100</extra_space>

</problem>

6. Functions, algorithms

6.1 The two modules
 The first module is destined for geometric modelling of the switch, based on the information
stored in the lyn files and in the technology file. The main script for completing this action and
viewing the results is:

[objStruct,rectangleStruct,xmax,zmax,LayersExtStruct] =

main_script_extract_info_from_gds(),

where:
- objStruct = matrix of data structures, each line representing a mask in the constitution of the
switch. Each data structure describes one object, giving information about : x and y coordinates of
each point in the object, shape, netname, cellname (from the lyn files), type, z coordinate, thickness
and material (from the technology file).
- rectangleStruct = array of data structures, derived from objStruct. Each element represents a layer
and contains information about the rectangles that, through their union, can approximate the shape
of the layer. The material, type, z coordinate and thickness are identical for all the rectangles in the
layer and are the same as in objStruct. There are four more arrays: x and y are the coordinates of
the bottom left vertex of the rectangle, w and h are the width and height of the rectangle.
- LayersExtStruct = array of data structures, describing the exterior layers that encapsulate the
switch. Those layers do not exist in the .GDS format and are depicted in the technology files. Each
layer is characterized by material, thickness, height. The height is a derived quantity, obtained by
processing the height information and order of the layers.
- xmax = the maximum value of the x axis of the domain.
- zmax = the maximum value of the z axis of the domain.

 The information summarised and offered by

main_script_extract_info_from_gds is used in the add_layout_to_device_* function.

device = add_layout_to_device_*(device)

 Along with the information extracted from the problem file, xmax, zmax, rectangleStruct and

LayersExtStruct assemble the layout of the switch and make it available and fit for the RF simulation.

To view the representation of the device and the results of the simulations, chamy-specific scripts

such as script_dev2sys_* or script_dev2snp_* have to be called.

6.2 Extracting information from KLayout
Functions :

 [noObj,listObj,domain] = read_lyn(lyn_files_path,sep);

- called from main_script_extract_info_from_gds
- reads in all the *.lyn files found in the folder given by lyn_files_path

 [noObj,listObj,domain] =

read_netlist(filename_net,noObj,listObj);

- called from read_lyn
- reads in all the objects found in a specified *.lyn file and attach them to the existing list of objects

 net_struct = xml_load(filename_net)

- called from read_netlist, read_xml and read_problemFile
- function available in MATLAB XML toolbox [8] for parsing xml files

 elem_info =

find_geometric_info(current_shape,current_transformation,dbu)

- called from read_netlist
- attributes the geometric information according to the shapes to the objects and applies the linear
transformations (Transformations)

6.3 Extracting information from the technology and problem files

 [NoLayers, problempath, type, material, colorlayer, zlayer,

thickness, holes, LayersExt] = read_xml('technologyFile.xml');

- called from main_script_extract_info_from_gds
- parses the technology file

 [terminals, params,l_extra_space] =

read_problemFile('problemFile.xml');

- called from add_layout_to_device_*
- parses the problem file

6.4 Processing the information and drawing
 draw_background(domain,color)

- called from main_script_extract_ info_from_gds and from every function that draws a part of the
switch
- draws a rectangle corresponding to the domain and fill it with color

 [r] = rectangle_reunion (noObj,listObj,color)

- called from main_script_extract_info_from_gds
- breaks the object (listObj) into rectangles on the basis of the horizontal and vertical lines and then
unites the neighbour rectangles by updating the dimensions of the first rectangle and eliminating
the added rectangle

 draw_union(r,color)

- called from rectangle_union
- draws the approximation of the layer's surface by the rectangles found in rectangle_union

 [listObj] = prepare_rectangular (listObj)

- called from main_script_extract_ info_from_gds

- checks for oblique lines in the object and if replaces them with an horizontal and vertical line
(stairways segments)

 dimensions(noObj,listObj,color,domain)

- called from main_script_extract_ info_from_gds
- this program draws the objects in 2D and computes their dimensions. It is similar to draw_shapes

 draw_shapes(noObj,listObj,color)

- called from main_script_extract_ info_from_gds
- draws shapes and and fills them with color

 [listObj] = no_gaps (listObj,dim,color,domain,k)

- called from main_script_extract_ info_from_gds
- eliminates the gaps from the specified object (listObj)
- dim - the maximum area of one gap; color - the color for the specified object; domain - the domain
of the object; k - the number of the present figure

 [pos] = holes_coord(listObj,dim)

- called from no_gaps
- returns an array with the positions of first and last vertex of a holes sequence

 [listObj] = membrane (listObj,pos,color)

- called from no_gaps
- draws the membrane without the holes; pos is the array that stores the positions of the holes
vertices

 draw_shapes_3D (noObj,listObj,color,z0,height)

- called from main_script_extract_ info_from_gds
- this function uses fill3 to create the above and below 2D faces of each shape and patch to create
faces in between. The resulted objects are empty inside

6.5 Adding the information to chamy

 device = add_layout_to_device_* (device)

- called from read_device_*
- uses the information from main_script_extract_info_from_gds and the information
from the problem file to add the layout to device structure
- LayersExtStruct is used to define the exterior layout, xmax, zmax and the sum of the layers'
thicknesses as ymax define the borders of the computational box, l_extra_space from the problem
file is used to adjust the positioning of the switch in the computational box mentioned above
- creates the bricks with the information in rectangleStruct
- attaches the terminals and the parameters from the problem file to the specified bricks

 [j,p] = find_object_underneath(nr,r,l,m)

- called from add_layout_to_device_*
- nr = the number of the layer, r = rectangleStruct, l = the number of the object in the layer, m = the
number of the rectangle in the object (m=1 if the object has a rectangular shape; if the object has a
complex shape, m can have other values), j = the number of the object from the below layer (nr-1)
that is under the l-object, p = the number of the rectangle from the j-object
- finds which rectangles can be found underneath the object for which it's called
- used to create vertical bricks, as in the case of the dielectric which drips on the underneath object

 [p] = find_disposition_up(r,m)

- called from add_layout_to_device_*
- r = an object from a layer, m = the number of the rectangle from r for which we want to find if it
makes contact with another rectangle on the up-side, p = the number of the rectangle that touches
rectangle m on the specified side
- finds how the overlapping of the superior side of the object is

- used to create vertical bricks, as in the case of the dielectric which drips on the underneath object

 [p] = find_disposition_down(r,m)

- called from add_layout_to_device_*
- r = an object from a layer, m = the number of the rectangle from r for which we want to find if it
makes contact with another rectangle on the down-side, p = the number of the rectangle that
touches rectangle m on the specified
- finds how the overlapping of the inferior side of the object is
- used to create vertical bricks, as in the case of the dielectric which drips on the underneath object

7. Chamy

Chamy is a software tool developed by the LMN team [9] for the modeling of high-frequency
integrated circuits components and their interaction with the electromagnetic environment. It
computes the frequency characteristics of analyzed devices. It can be regarded as a MATLAB toolbox
for RF simulations of HF integrated microsystems. In a straight forward manner, the entire process
consists of the following steps: import the passive device description, extract the model and
generate the state-space representation of the device, compute the frequency characteristics of the
device and export the results in a standard .snp format [10].

The input parameters are mainly related to the layout description and technology description,

in other words the device geometry and material properties. After problem description, the next
step in chamy is to generate the state-space model of the device, by using the Finite Integration
Technique (FIT) to discretize Maxwell’s equations with EMCE boundary conditions:

 , (1)

where x is the state vector, u is the input vector and y is the vector of output signals. In the
frequency domain, the relationship between the input and output signals is obtained by solving an
algebraic system of linear complex equations for each frequency, where the input/output behavior
in the frequency domain is given by the transfer matrix:

 , . (2)

This step is done by using Adaptive Frequency Sampling (AFS) combined with Vector Fitting
(VF) [11] [12]. The VF procedure uses as input a set of pairs (ωk, H(ωk)), k= , where F is the
number of frequency samples. Its goal is to identify the poles pi, the residual matrices Ki and the
constant terms K, K0 of the rational approximation for HFIT(ω):

 . (3)

This step represents the model order reduction phase, which is essential for the extraction of

a circuit model that can be further used in (re)designing more efficient micro-electro-mechanical

devices [13].

Next, we will present the functions in chamy that are relevant to GDS2M. This functions

interact with add_layout_to_device_*, which is the function in which the layout is described with

the information extracted by GDS2M.

 script_dev2sys_* and script_dev2snp_*

 Script_dev2sys_* and script_dev2snp_* are two of the main functions from

chamy. They link the folder with the source files used for the analysis and the folder where the

problem is defined.

 Script_dev2sys calls read_device_* function, creating the model of the structure,

and generating the FIT matrices required by the EM computation. It also creates figures of the

structure for visualization. Script_dev2snp_* is used for the EM computation using the FIT

matrices generated by script_dev2sys_*, for a number of frequency samples calculated using

AFS.

 device = read_device_*()

- called from script_dev2sys_*

- is designed to gather information about the structure (geometry, position, material properties,

boundary conditions) and mesh domain. The structure intended for analysis is placed in the

computational domain resulted from read_device_*.

 device = initiate_device_*()

- called from read_device_*
- assigns to information such as structure type, software version, id and the name of the folder for
output or intermediate data to the structure.

 device = add_layout_to_device_*(device)

- called from read_device_*
- describes the geometric information of the computational domain, structure and boundary
conditions.

 device = add_matlib_to_device_*(device)

- called from read_device_*
- gives detailed information about the materials of switch's components.

 device = add_infogrid_to_device_*(device)

- describes the discretization grid for the computational domain

8. Running the code

 This section shows how to run the code for an example of an RF-MEMS shunt capacitive
switch and what the returned results are. The description of the benchmark can be found in [7].
 For a given .gds file (Fig. 5), describing the switch, we extract from KLayout the .lyn files,
using the Trace Net function. For the specified switch, there are 7 objects, therefore 7 .lyn files,
organised in folder by masks (4 masks : CPW, electrode, dielectric and membrane). These files can be
found in Appendix A.

Figure 5. GDS file for an RF shunt capacitive switch. Dimensions and numbering are shown.

 The other two input files for this switch can be found in the Technology file section and in
the Problem file section in this document. While the file paths in the .lyn files are not important and
the files can be used in the actual form (the <layout> tag represents the file path where the GDS file
can be found and it is not used in the program), the <filepath> tag in the technology file must match
the address where the .lyn files can be found.

 By calling main_script_extract_info_from_gds, the following results and figures
are obtained:

Obj =

 [1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]

 [1x1 struct] [] [] []

 [1x1 struct] [] [] []

 [1x1 struct] [] [] []

r =

 {1x4 cell} {1x1 cell} {1x1 cell} {1x1 cell}

xmax =

 6.0000e-04

zmax =

 5.2000e-04

LayersExt =

 [1x1 struct] [1x1 struct] [1x1 struct].

 Figure 6. Mask 2 (electrode) from the RF shunt
 capacitive switch with dimensions.

Figure 7. Mask 1 (CPW lines) from the RF shunt capacitive switch with dimensions.

Figure 8. Mask 3 (dielectric) from the RF shunt capacitive switch with
dimensions.

 Figure 9. Mask 4 (membrane) from the RF
 shunt capacitive switch with dimensions.

Figure 10. The 2D view of the RF shunt capacitive switch, created by overlaying the masks.

 In Fig. 6 to Fig. 10, the two-dimensional layout, obtained only by using the .lyn files, is

shown.

Figure 11. 3D view of Mask 1 for the RF shunt capacitive switch.

Figure 12. 3D view of Mask 2 for the RF shunt capacitive switch.

Figure 13. 3D view of Mask 3 for the RF shunt capacitive switch.

Figure 14. 3D view of Mask 4 for the RF shunt capacitive switch.

Figure 15. 3D view of the layout for the RF shunt capacitive switch, obtained by overlaying the masks.

 In Fig. 11 to Fig. 15, the three-dimensional layout of the RF shunt capacitive switch, obtained

by merging the information from the lyn files and the technology file, is shown.

 By running script_dev2sys_SwC_Qian, which uses
add_layout_to_device_SwC_Qian_GDS2M, the following figures are shown:

Figure 16. Model for the RF shunt capacitive switch in chamy.

0

2

4

6

8

x 10
-4

0

0.5

1

1.5

x 10
-3

0

1

2

3

4

5

6

x 10
-4

XY

z

Figure 17. Discretization grid used in chamy for the RF shunt capacitive switch.

 These two figures show the correct transfer of information from GDS2M to chamyI. The

script returns other results as well, regarding the full wave analysis.

9. Important observations and future improvements

 This software tool has been recently released and still has some features that need
improvement. Most of these are related to the covering all the possibilities when transferring the
data to chamy. For example, at the moment, only one parameter of a type (W, L, H) can be
introduced. Connecting the parameters to the specified bricks must be improved, because the
parameter types have special features and a standard variable can only inherit the numerical value
of the parameter. Two more functions for building vertical bricks for the left and right side in the
case of pouring dielectric must be added.

 Changing the state of the membrane from UP to DOWN is done by modifying the height tag
for the respective mask in the technology file. In the future, a function for doing this automatically
will be designed.

10. Conclusions

GDS2M is a software tool aimed to facilitate the processing of geometrical information of
MEMS. It starts from the .GDS file, which describes the 2D geometry of the device's layers, and from

the technology file, which describes the vertical structure of the device. These two input files are
translated in XML format and then, along with the problem file (which contains information about
the solved problem), by merging their content, the input file for the EM analysis tool, chamy, is
generated.

In the process of setting up a new simulation in chamy, the step of introducing the geometric

layout is the one that takes the longest user's time to complete. This happens mainly because this is
usually done by hard coding into the layout file, defining the parameters, the domain, layers, bricks
and terminals. This is not only time consuming, but is also the main source of runtime errors. By
automating this step, GDS2M removes the possibility of human errors, especially in the case of
complex device layouts, and makes a solid correspondence with the .GDS layout source files that are
usually provided by our industrial partners.

11. Acknowledgments

 This work was done under the guidance of Prof. Daniel Ioan and Assoc. Prof. Gabriela

Ciuprina, UPB. The program is part of the ToMeMS project, conducted under the financial support of

the Romanian Government program PN-II-PT-PCCA-2011-3, managed by ANCS, CNDI – UEFISCDI,

grant no. 5/2012.

12. References

[1] MATLAB, an interactive numerical computing environment and high-level language,
developed by MathWorks http://www.mathworks.com/matlabcentral/

[2] CHAMELEON-RF project: http://www.hitech-projects.com/euprojects/chameleon%20RF/
[3] M. Kofferlein, KLayout High Performance Layout Viewer And Editor, Version 0.21.16, Free

software and documentation available at http://klayout.de
[4] V. K. Varadan, K.J. Vinoy, K.A. Jose, RF MEMS and Their Application Electricity and

Magnetism, John Wiley & Sons Ltd, West Sussex, England 2003, pp.13-16.
[5] G. M. Rebeiz, G.B. Muldavin, RF MEMS Switches and Switch Circuits, IEEE Microwave

Magazine, December 2001, pp. 59-71
[6] Jürgen Thies, Layout Editor, IC and MEMS designs Viewers and Editor; extensive list of similar

software tools available at http://www.layouteditor.net/links/
[7] J.Y. Qian, G.P. Li and F. De Flaviis, A parametric model of low-loss RF MEMS capacitive

switches, Asia-Pacific Microwave Conference, APMC 2001, Taipei, Taiwan, 2001.
[8] M. Molinari, XML toolbox, Conversion of MATLAB data types into XML and vice versa, April

 2005 http://www.mathworks.com/matlabcentral/fileexchange/4278-xml-toolbox
[9] Numerical Methods Laboratory (LMN), research center in the domain of computerized

 electrical engineering, http://www.lmn.pub.ro/
[10] D. Ioan, G. Ciuprina, M. Radulescu, Compact modeling and fast simulation of the on-chip

 interconnect lines, IEEE Transactions on Magnetics, vol.42, issue 4, pp.547-550, 2006.
[11] B. Gustavsen, A.Semlyen, Rational approximations of frequency domain response by vector

 fitting, IEEE Transactions on Power Delivery, vol.14, July 1999.
[12] I.A. Lazar, G. Ciuprina, D. Ioan, Effective extraction of accurate reduced models for HF-IC

 using multi-CPU arhitectures, Inverse Problems in Science and Engineering, vol.20,no.1,
 2010.

[13] G. Ciuprina, D. Ioan, I.A. Lazar, C.B. Dita, Vector Fitting Based Adaptive Frequency Sampling
 for Compact Model Extraction on HPC Systems, IEEE Transactions on Magnetics, vol.48, issue
 2, pp.431-434, 2012.

http://klayout.de/

APPENDIX A

Mask 1 - object 1

<?xml version="1.0" encoding="utf-8"?>

<nets>

 <net>

 <name>Net2</name>

 <top_cell>MainCell</top_cell>

 <layout>C:\ToMeMS\GDS\qian.GDS</layout>

 <dbu>0.01</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>1/0</layer>

 <cell>MainCell</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (0,0;60000,12000)</shape>

 </element>

 </shapes>

 </net>

</nets>

Mask 1 - object 2

<?xml version="1.0" encoding="utf-8"?>

<nets>

 <net>

 <name>Net3</name>

 <top_cell>MainCell</top_cell>

 <layout>C:\ToMeMS\GDS\qian.GDS</layout>

 <dbu>0.01</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>1/0</layer>

 <cell>MainCell</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (0,40000;60000,52000)</shape>

 </element>

 </shapes>

 </net>

</nets>

Mask 1 - object 3

<?xml version="1.0" encoding="utf-8"?>

<nets>

 <net>

 <name>Net2</name>

 <top_cell>MainCell</top_cell>

 <layout>C:\ToMeMS\GDS\qian.GDS</layout>

 <dbu>0.01</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>1/0</layer>

 <cell>MainCell</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (42000,20000;60000,32000)</shape>

 </element>

 </shapes>

 </net>

</nets>

Mask 1 - object 4

<?xml version="1.0" encoding="utf-8"?>

<nets>

 <net>

 <name>Net1</name>

 <top_cell>MainCell</top_cell>

 <layout>C:\ToMeMS\GDS\qian.GDS</layout>

 <dbu>0.01</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>1/0</layer>

 <cell>MainCell</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (0,20000;18000,32000)</shape>

 </element>

 </shapes>

 </net>

</nets>

Mask 2 - object 1

<?xml version="1.0" encoding="utf-8"?>

<nets>

 <net>

 <name>Net4</name>

 <top_cell>MainCell</top_cell>

 <layout>C:\ToMeMS\GDS\qian.GDS</layout>

 <dbu>0.01</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>2/0</layer>

 <cell>MainCell</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (18000,20000;42000,32000)</shape>

 </element>

 </shapes>

 </net>

</nets>

Mask 3 - object 1

<?xml version="1.0" encoding="utf-8"?>

<nets>

 <net>

 <name>Net4</name>

 <top_cell>MainCell</top_cell>

 <layout>C:\ToMeMS\GDS\qian.GDS</layout>

 <dbu>0.01</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>3/0</layer>

 <cell>MainCell</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (18000,19990;42000,32010)</shape>

 </element>

 </shapes>

 </net>

</nets>

Mask 4 - object 1

<?xml version="1.0" encoding="utf-8"?>

<nets>

 <net>

 <name>Net2</name>

 <top_cell>MainCell</top_cell>

 <layout>C:\ToMeMS\GDS\qian.GDS</layout>

 <dbu>0.01</dbu>

 <complete>true</complete>

 <shapes>

 <element>

 <layer>4/0</layer>

 <cell>MainCell</cell>

 <trans>r0 *1 0,0</trans>

 <shape>box (24000,12000;36000,40000)</shape>

 </element>

 </shapes>

 </net>

</nets>

